CONTRACTION OF A HIGHLY NONEQUILIBRIUM
CURRENT-BEARING PLASMA

V. M. Atrazhev and I. T. Yakubov

1Contracted" is the term applied to that inhomogeneous state of a plasma in which it with-
draws from the enclosing walls and concentrates in a more or less thin layer through which
a current passes. Contraction is the result of instability developed in the original homoge~
neous state and may be related to the existence of a volt—ampere characteristic segment
with negative differential conductivity. This phenomenon is known in semiconductor physics,
and various instability mechanisms leading to contraction have been studied [1]. Well known
in a low-temperature plasma is thermal contraction connected with superheating instability
of the electron gas [2-4]. In the present study we will consider a highly nonequilibrium
plasma in which contraction may develop as a result of disproportion in the number of elec-
trons, i.e., contraction of a recombination—ionization character. We consider below the
homogeneous state of a nonequilibrium weakly ionized plasma with charged-particle con-
centration ne=~ 101-10%® cm™? (electron temperature T of the order of thousands of degrees,
with gas cold). Disequilibrium is produced by the departure of radiation beyond the limits
of the plasma volume. Such a state will be considered with respect to the instability noted,
but not studied, in [5]. As a consequence of this instability the plasma may transform to an
inhomogeneous (contracted) state, which is considered under conditions such that Joulean
electron heating is compensated by losses due to elastic collisions with atoms of the gas.
Charge diffusion plays the basic role in establishing the boundaries dividing the current-
bearing region from that without current. More complex is the situation where radiation
losses of energy are also significant and superheating, as well as ionization instability, is
possible. This case is evaluated briefly at the close of the study.

1. The Homogeneous State of a Strongly Nonequilibrium Plasma. We will consider a weakly ionized

homogeneous plasma in an electric field & , in which the electron temperature T significantly exceeds
the atom and ion temperature Tg. The electrons are heated by a current and lose energy by elastic col-
lisions with atoms, as well as radiation. The electron energy balance will be

o0& 2 =We-+Wk.

where g=nge’/my is the coefficient of electrical conductivity, Wer=(2m/MngrT are the losses in elastic
collisions; Ng is the electron concentration; m and M are the masses of the electron and atom, respectively;
v is the elastic electron—atom collision frequency; Wy, is the energy loss by radiation, mainly on atomic
spectral lines. We will assume that collisions with iong are insignificant.

For sufficiently high ng, its value will be determined by the Saha equation with temperature T. Such
a plasma is referred to as "two-temperature.” However, due to intense scintillation the population of
atomic levels may become significantly less than the Boltzmann level, and ng, less than the value given by
the Saha equation. There then develops a non-two-temperature, highly nonequilibrium plasma [6]. We will
consider its state. -

To determine ng and the populations of atomic levels ni we write the particle balance equations for
these levels. Relative scintillation intensity drops rapidly with growth in level number k. It is usually
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sufficient to consider scintillations of only the first excited states k=2, 3
(k=1 being the ground state). Thus, having traversed the intervals 12,
2—3 a bound electron moves (diffuses) in energy space only as a result
of collisions. We write the balance equation in the form of an expression
for electron current jg in atomic level spaee [7],

. anﬂ .
Je = Nyle®1y — Naledny — NaAyy; 7 = Je (1.1

Je = Nalte@yq = Ngletrgs — NgAgy,
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Je = Nglte®3e — Mg (D35

where ny, n,, ng are atomic concentrations; negwy ks, are frequencies of
inelastic collisions with electrons with transition k—~k+ 1. We consider
only transitions between neighboring levels, as they are the strongest

Ay k-1 is the probability of scintillation, considering possible resorption[6].

In reality, wi k+; and Ak k- are somewhat more complex quantities,
defined in [7]. In that study the kinetics of shock radiation recombination
and ionization are analyzed in greater detail, and some of the assumptions
utilized herein are arrived at. Itis shown that '

4V 2met Ay exp (__ Ey ;‘ Ez\’ (1.2)
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where Ej is the energy of a level measured from the continuum (such that E; is the energy of ionization);
Ay and A are constants, wi4q k and wk k+1, as well as weg and wge,* are related by the equations

K
R+l
Opy1,k == Oh g+t K, 03¢ = 0e3Kg;
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T; is the statistical ion sum, and g is the statistical weight of level K.

In the stable state scintillation is compensated by excitation and ionization and the value of j e~ 0
From Eq. (1.1) we have

2
ne ; ng 5
m= g (U ) (14 ) =gt (14 22, (1.3)
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where p, = Ay /wyg, P3=Agy/ws, are quantities characterizing scintillation. If p,, p3> ng, the stable plasma
igin a state of strong disequilibrium. Such, for example, is the case with Ar+Cs plasma at T =2000°K;
ne =101 em™3; nog=10% cm™3; ny =10 em™.

It is significant that if ny is small, interelectron collisions cannot maintain a Maxwell distribution
at high energies. Thus, for wy, we introduce the coefficient Fy [7],
1 _ mos 2my T Ay
T, E,—E, &'

e ee

Fi=~

T on

1+¢
where ) is the "Coulomb" logarithm. Deviations from the Maxwell distribution greatly attenuate the di-
rect ionization path, and we thus neglect it.

The total number of heavy particles n=n;+ng is fixed. If ng«n, then n= ny, and for ne we have from
Eq. (1.3)

"e3 + ne2 (ps + ps) + 7 (Pzpa + Pz% n “—nK;L) + pzpagﬁ‘n = 0. (1.4)

e

* we3 is close in value to the recombination coefficient in the diffusion approximation of {8]:

0,304V I R (9Y m) T2,
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If nK;> pyp3 + polwyy/twee)n, then Eq. (1.4) has two positive roots, ng™ and ng= (Fig. 1). Consequently, for a
given T, the existence of two homogeneous stationary states is possible: ne* corresponds to a plasma rel-
atively close to equilibrium and at higher values changes to the Saha formula ng*= VnK;; ng corresponds
1o a strong nonequilibrium plasma. When ng is small, radiation output on both lines is significant, and
the deviation from Maxwellian distribution will be

- 1
R = g papygt (1.5)

At T< T, (Fig. 1) the homogeneous state cannot be realized.

2. Instability and Contraction of a Highly Nonequilibrium Plasma with Current. Elastic Losses.
The thermal contraction of a current-carrying plasma normally studied occurs in the case of an inhomo-
geneous dependence of T on heating field & developing in the energy balance [4]. To a fixed value of &,
there correspond two homogeneous states with differing temperatures T. One of these is usually unstable
due to disproportion between Joulean heating and electron energy losses. In an attempt to realize this state
the plasma contracts [1, 4]. This mechanism will not be considered in this section. The energy balance
equation with elastic losses Wy, into which enters the constant collision frequency v, is stable with re-
spect to superheating. It gives a single-valued relationship between T and &

2
M o
T =5 &. (2.1)

T 2m?vE

However, it was shown above that the function ng(T) is not single valued, and so to a field value &
there correspond two homogeneous states with differing ng. To determine the realizable homogeneous
state it is necessary to study the solutions n‘g, ng with respect to stability relative to small fluctuations in

electron density 6a(t) =6 e for a fixed field & . Linearizing system {1.1), we obtain
n, & n,

where He =dne(T) /dT is the temperature derivative of the homogeneous background density (Fig. 1), and 7
is the characteristic recombination time, while
Kl KZ Ks
+ - + .
11220)12171 1+ Pz/ﬂe) (r+ Ps/ﬂg) [P (1 -+ Ps/ﬂe) n~ (‘)Senez

It follows from Eq. (2.1) that the strongly nonequilibrium state at ng<neg; rTe <0 (Fig. 1) is unstable.
In a strongly nonequilibrium plasma r?e' = =ng~E;/ T? [Eq. (2.2)], and thus, the instability development time
is close to 7. The plasma either enters the state with increased ng, i.e., ng¥, or decays. As was indicated
above, the presence of unstable homogeneous states leads to the appearance of a falling segment in the

volt—ampere Gharacteristic_ﬁ % . In fact, the form of the function T=e2ng( T)x _g/mv , where T corresponds
to Eg. (2.1), is close to that of ng(T) (Fig. 1), i.e., has an S-shaped character.
4

There are, however, possible conditions under which homogeneous fluctuations cannot develop. If
because of high external circuit resistance a constant total current I is maintained, then only inhomoge-~

neous fluctuations can develop [1]. In studying inhomogeneous fluctuations & (xt) :éoeXp (ik -?+'yt) in sys-
tem (1.1) we must consider ambipolar diffusion and supplement the system with the equations

7/
‘:te =Je (neT) -t Davzne’ (23)
G(ne)gz'—‘wel(ney T)=E1ia(neT)—V(}~e v T), _ (2.4)
—> —> — —
j=0(n, )&, div j=0, rot & =0. (2.5)

Here Ag =ngT/my is the coefficient of electrode thermal conductivity. Linearizing Egs. (1.1), (2.3)-{2.5)

for small inhomogeneous perturbations §,, &g, 8, 8j. and considering only exponential dependence on T,
we obtain

8 E,
Te+ 7'_31;—5% (2.6)
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The condition for nontriviality of system (2.6) gives a dispersion equation, which we write, directing the

y axis along the field g

E, % 1 TIIL iy, n, ) -
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— Dk, (2.7)

where Tgy=[2myp/ M]™!is the relaxation time T for elastic collisions. The maximum increment occurs for
perturbations with ky= 0, leading to a layering of the plasma across the current. Only such perturbations
will be considered further. Fluctuations with dimensions smaller than

-~ 172
Lp =1 (% I.':L_*flrpa> = (tD,)V2 : (2.8)

damp out even if xTe <0. They are reabsorbed by diffusion in a time shorter than the ionization—recombi-
nation time 7. For ne™—ne,, [ng~] = = and the dimension Lp increases without limit. For ng= ng, fluc-
tuations of any dimension damp out.

If the system dimensions are greater than Ly and ne<ngg, then as a result of the development of in-
stability, the plasma may transform to a stationary inhomogeneous state. We will consider the simple ge-
ometery proposed in [4], where the volume V has the form of a long thin plane layer (Fig. 2) with dimen-
sions I<Lp, L>Lp. The resulting stationary inhomogeneous distributions of ng and T will be described
by the system of equations* (2.3), (2.4) with (9ng/0t) =0. The solutions of interest to us have the form of
a stable current pinch, separated from the currentless zone by a narrow front within which ng and T are
constant. From Eq. (2.7) it follows that thermal conductivity cannot form a stable front, since the insta-
bility produced by disproportion in particle balance is not stabilized. However, simultaneous solution of
Egs. (2.3), (2.4) is difficult, and so we will consider the limiting cases of very high and very low thermal
conductivity below.

The dimensions of the front L¢ are close to the critical fluctuation wavelength, whose wave vector
ke is given by the equation ¥ =0 [9]

2
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Its solution can be written. However, it is evident that if the inequality
e _he  De (_2)2 ' (2.10)
Bl w2, B >

is fulfilled, where Dg is the electron diffusion coefficient, then the front width L is equal to Lp [Eq. (2.8)],
and Eq. (2.10) takes on the form Agke?> (E2/ T?(ne/7). Equation (2.8) for Lf may also be obtained while
neglecting temperature fluctuations from the very onset. Thus, inequality (2.10) corresponds to a plasma
with elastic losses in the volume and high thermal conductivity which levels the temperature. Inhomoge-
neity in T can develop in the front only because of the appearance in Eq. (2.4) of a loss E;jg. Its develop-
ment time is (T?/ EIZ)'T, and it is levelled by thermal conductivity over a large distance of the order of

/

A e \12 / 3 \1/2
LT::_'(—P—~ T > —"‘:(DeTEf,rZ) >LD

n 2
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Consequently, the temperature T, in pinch and front are homogeneous, and from Eq. (2.1)

Me .,
Ty= iy &L

2m2v?
We will consider a solution contracted about the x axis (Fig. 2). It is described by the equation

d2
Dy 2l 4 gy (e Tg) = 0 (2.11)

¢ da?

* As in [4], we will neglect losses at the walls, considering only volume processes.
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AT for y= + L/2 (electron flow through the boundary is equal to zero). The

function
/ jo = n—“’[ . Hsn —1 (2.12)
T nt (L4 pefng Fa) (1 psiny) )
ng /A nE
/ A follows from Eq. (1.1) and is shown in Fig. 3. The characteristic form
cba of the solution studied (Fig. 4) is a homogeneous layer with ng> ng o Sur-
rounded by a region where ng is close to zero. Using the phase trajec-
Fig. 3 tory method [91, it can be shown that such a solution exists for a tem-
nE(T)
e perature value satisfying the condition* _,‘ﬂ je ingt, Tyl dnyt = 0.
. | nEEd) ’
[“ . '-_\ s Through reduction in current, for example, by increasing external
7o) circuit resistance, one may attempt to realize the homogeneous state
' / \ = with current density j<j, (Fig. 5). Then at a current I=j,-S, where 8
Jg ig the area of the electrode surfaces, the plasma transforms to the con-
l\ [\ " tracted state with a current densitv in the current pinch ; p =0 2, (&0 &
N 5] and a field intensity &,=/ 2Tyn»> {41 *). The size of the pmch Lp is
e determined by the current I=jp- 8- Lp/L and decreases with decrease
L/2 in I. The width of the transition region is of the order of Lp. The re-
maining solutions of this type (for example, alternating layers) are un-
Fig. 4 stable [9].

Calculations were performed for an Ar plasma with conditions n=
10% cm™, T, =300°K, l 0.2 cm. The effect of disequilibrium begins to
appear at ne<1014 em™; the value of T¢ (Fig. 1) is close to 7000°K. Un-
der these conditions contraction corresponds to a field of & ,==0.5 V/om.

We will now consider the opposite case of weak thermal conduc-
tivity, where
n, 2,

. __° =1, 2.13
Tl P < (219)

Then from Eq. (2.9) we arrive at the expression

o —
*1‘/ 3 ”‘3 (1+WT"’). (2.14)
The condition of Eq. (2.13) itself takes on the form Agke? <« (E/ TZ)(ne/'r)[1+ (E{3/ TH(rey/T)17Y, where
(T2/ BT [1+(E2/ TH(1ey/7)] is the development time of temperature inhomogeneity. Temperature fluc-
tuations will be levelled by thermal conductivity if their dimensions do not exceed the small value

72 ThA E1 )
L) ZW‘/EI—H-E—(i-** - <L

Consequently, thermal conductivity does not affect temperature inhomogeneities of dimensions L, and
greater. The term (d/dx){Ao(dT/dx)] in Eq. (2.4) will be neglected. The distribution of T over the front
depends on the ratio of two types of losses — elastic and inelastic:

T=T, (1-_1_9.’]-5 (ne,T)>. (2.15)

Considering the coarse estimate ljalm ng/7, from Egs. (2.14), (2.15) it may be concluded that if the ioniza-
tion time is great, E 7o« TyT, we then return to the previously considered isothermal case. Elastic en-

* The condition follows from Eg. (2.1) and accompanying boundary condition

T, o
nef o) R . D \/{(]ﬂ) +T/.—a~—“
j ir ('Le To) dn =7 \ iz ,L/Z_ o
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i : ergy losses equalize weak inhomogeneities produced by ionization—recombination.
On the other hand, if ETgy>> Ty7, then the T distribution in the front may be quite
inhomogeneous. In the latter case it is necessary to solve the system (2.3), (2.15),
since the effect of temperature change on jg (ne, T) cannot be neglected. The field
&, at which contraction occurs is determined by the condition that

+ .
e (18 o) '
T jetnd Ting, &) dng' =0, (2.16)

¢

where the function T(n,, &) is found from Eq. (2.15). For a coarse estimate of &,
we will proceed as follows. The inequality E;Tq;>> TyT permits us to neglect elastic
energy losses. Then for j, we have the approximate expression jg (ng, T)e
(Ty/Eng/Tey). This estimate is, however, invalid in the vicinity of the zeroes of the function jg. The
position of the latter is given by the expression in brackets in Eq. (2.12) at a temperature equal to T,.
Thus, over the entire parameter range j. is described fairly well by the expression

Fig. 6

. Ty 7
Jo= gy 7,1 (e T, (217

where f(ng, Ty) is a function which goes to zero at the points ng™ (Ty) and ng™ (Ty) and is equal to =1 at
neg <ne”~(T) and +1 at ng™(Ty) <ng <ngt(Ty). Using Eq. (2.17) in Eq. (2.16) greatly simplifies the problem.
The condition of Eq. (2.16) then takes on the form
. (&)
.f nzif (nei’ éoo) dﬂ'ei = 07
! :

whence follows the equation for estimation of &,:n." (&) =12r," (&¢). The "renormalization® of j; [Eq.

{2.17)], obtained by consideration of temperature change, leads to a change in the time of development of
ionization fluctuations 7— (E%/ T})Te;. This affects the front dimensions

E1!; \\1/2 ’E‘IQ \1/2
Lc:n( nel ‘L'ezDa) z(T_ZTEl'DCL)‘ -,

e ¢

which corresponds to Eq. (2.14) at (E*/ T?(1;/T)>» L.

3. Contraction of a Plasma with Current. Elastic and Radiation Losses. It is known that radiation
energy losses W, lead to superheating instability [4]. Thus, a nonequilibrium plasma with current with
consideration of elastic and radiation losses will be subjected to two types of instability — ionization and
superheating.

According to the general considerations of [9], instability of a homogeneous current-bearing plasma
will appear if there exists a segment of the voli—ampere characteristic with negative differential conduc-
tivity. Such a characteristic is shown in Fig. 6. Segment I corresponds to strong ionization; the function
ne(T) is given by the Saha formula; elastic losses predominate in the energy balance equation. On seg-
ment II the electron density is still high, and the effect of nonequilibrium is insignificant. Radiation losses
predominate in the energy balance, which produces radiation superheating [4]. On segment III radiation
losses are also significant but the plasma state here is in great disequilibrium, which leads to stabilization.
A plasma containing 10%® ¢m™ atoms of Cs and 10! ¢m™ atoms of Ar at T=2000°K is in such a state. The
electron density is approximately 1012 cm™3. Finally, on segment IV radiation losses become small (ng
are small), i.e., a strongly nonequilibrium plasma with losses Wg; develops, which is ionization unstable.

We now write the damping decrement of small perturbations for thg case where WR>» Wgy and the
major contribution to WR comes from transitions 2— 1 Wg =(E;—Ej)n,A,; (which is intrinsic to alkaline
metal plasmas):

L

E, n, 1 i (W kEWg ~
vZ_T_;_T[ned—T—(-ﬁ)ﬁtz,c—”.z—n—e’ine+lc27»e]><

—% Ry S
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where 7,8 =ng/n,A,* is the time characterizing second-level scintillation. A characteristic of superheat-
ing instability is the negative sign of the derivative d/dT(W /o) [9]. Along the current (ky=k) superheating
instability will be stabilized by the term 2(ne/ne)WR(ky2/ k?%); therefore, we will consider only transverse
fluctuations with kg =0.

On segment II, where we have a two-temperature plasma,

2
_Ey " 1| M QE,—Ey)(E—E,) > Efn,  m (BEy—E [, K B, > 2
e I’Z-l N [TZR a1 ——k)ie]x {7—27 * o" s ! mmmZ Ey—Ey + ke _Dak A3-1)

The front of the contracted state developing at 2E,> E; in the case of superheating [4] may be formed by
electron thermal conductivity and has a value of the order of

R4, apt 1172

2 e
La= “[ n, (2Es— E;) (E;—Ey) |

However, from Eq. (3.1) it is evident that if Ly « Lp, the front is formed by diffusion. Its widthis equal
to

Pl 5 2B — Eg) [ B 1 ) v
Lc:“[El Dov =5 —%: (1+(L1—E) T

and at 7> 7,B7 is close to Lp.

On segment III, where rTe<0 and d/dT(WR/o-) <0, for v we obtain

2

n, EP 4 (Ey —E)E, " |[EZ n,  (By— E,2 -1 N
= _° S I 7 W vk Wk 20 S kzx — Dt
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Despite the presence of attributes of both ionization and superheating instabilities, fluctuations decay if

7.6 n, ) j . . T .

el el Rl ( PP @ —P) + 26 (1),
where 8=1~E,/E;. But if this condition is not fulfilled there exist two values of wave number ke, <kg, at
which y=0. Fluctuations with ke {<k<kg, in the linear approximation prove to be nondamping. In the lim-
iting case of high thermal conductivity, where AJ[E,|7 D n.\—1>1; L;>L, , the characteristic dimensions
corresponding to kci and ke, have the form Lci"‘-’ Ly > chﬂ Lp. Fine-scale perturbations of dimensions
less than Ly are reabsorbed by diffusion; electrons succeed in leaving the fluctuation volume. Perturba-
tions of dimensions Lp<L<L;, will grow, since diffusion cannot level the inhomogeneity in ne, and the
change in T will be compensated by electron thermal conductivity, so that the inverse effect of T on cur-
rent j; will not exist. This factor comes into play only when the dimensions of the fluctuation (due to its
spreading) exceed L,. Within the fluctuation there develops a change in T which leads to damping of the
perturbation.
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